Disappearing tracks at Muon Collider

José Francisco Zurita

Based on: R. Capdevilla, F. Meloni, R. Simoniello, JZ, arXiv:2102.11292, JHEP 06 (2021) 133

Energy Frontier Workshop - Restart, Zoom, 02.09.2021

Long-Lived Particles

LLPs: New Particles with macroscopic lifetimes (τ~ns, cτ~cm), theoretically well motivated.

Exist in the SM!

large cτ, small Γ

- Large mass hierarchies
- Compressed spectra
- Small couplings

EW Baryogenesis
Dark Matter
Hierarchy Problem
Neutrino Masses

BSM Models: Supersymmetry, dark QCD, RH neutrinos, Neutral Naturalness, Higgs Portal, Z' Portal, Hidden Valleys, ...

LLP signatures-> arXiv:1903.04497; LLP theory motivations-> arXiv:1806.07396

Long-Lived Particles

LLPs: New Particles with macroscopic lifetimes (τ~ns, cτ~cm), theoretically well motivated.

Large mass hierarchies
 Compressed spectra
 Small Couplings
 EW Baryogenesis
 Dark Matter
 Hierarchy Problem
 Neutrino Masses

A lot of interesting signatures!

BSM Models: Supersymmetry, dark QCD, RH neutrinos, Neutral Naturalness, Higgs Portal, Z' Portal, Hidden Valleys, ...

LLP signatures->/arXiv:1903.04497; LLP theory motivations-> arXiv 1806.07396

Muon Collider

- Renewed interest in Snowmass. MuC has its own joint forum across the EF, AF and TG (see A. Tricoli's kick-off talk Monday, unstructured discussion on Tuesday, Snowmass Muon Collider Forum, https://indico.fnal.gov/event/50346/)
- AF: See review talk by Srudhara Dasu on Tuesday.
- Many interesting (and diverse) physics opportunities!
 - Review: Muon Smasher's guide (Al Ali et al, 2103.14043),
 - Higgs: see Z. Liu's talk on Wednesday (and refs therein)
 - EW: Buarque et al, 2106.01393
 - Top Physics: T. Theil's talk on Wednesday (and 2010.05915)
 - BSM: Franceschini, Greco, 2103.01617
 - LQs: C. Cesarotti et al (talk on Thursday, 2104.05720),
 - RK (LQs + Z'): G.Y. Huang et al, 2103.01617
 - Higgs self-coupling: T. Han et al, 2108.05362
 - Dark Matter: Costa's talk this session (also arXiv 2107.09688)
 - ... more to come! (and also those I omitted)

LLPs@MuC

• Which advantages can a MuC give for LLPs? Folklore: "A lepton collider is clean..."

MuC is not clean for LLPs (~4x10⁵ μ/m, give or take...).
 signal event display

Beam-Induced Background (BIB)

BIB off

Credit: F. Meloni

BIB on

TeV "pure" Electroweakinos: MSSM's last stand

- The neutralino is the MSSM DM candidate, made out of Bino, Wino and Higgsino*.
- Relic density sets "pure" masses: $\tilde{B}(100 \text{ GeV})$, $\tilde{W}(2.7 \text{ TeV})$, $\tilde{H}(1.1 \text{ TeV})$.

Since EW symmetry is broken, in an EW multiplet neutral components correct their masses due to Z-loops, charged components also have W, γ -loops.

Y	$c \tau [mm]$	$\Delta_{+} [{ m MeV}]$
0	6.6	160
1/2	68	340

At pp colliders Π^+ gets <u>lost in hadronic noise</u>. The signature is a charged track (χ^+) decaying into missing energy (χ^0): disappearing track.

$$\chi^{\pm} \to \chi^0 + \pi^{\pm}$$

Popular benchmark: studied for several future colliders (see European Strategy Physics Briefing Book, 1910.11775)

^{*} A pure Higgsino, EW doublet, is ruled out, because both neutral states are mass degenerate, and the Z-n1-n2 coupling is actually Z-n1-n1. Z currents with weak couplings are excluded by direct detection experiments (XENON100, LUX, etc). Some additional Bino and/or Wino component is required.

DTs@MuC

- MuC vs FCC-hh: Pair production of EWkinos is more central and less spread.
- About 10K events $\chi^{\pm} \chi^{\mp}$ at MuC 10 (MuC 3 has 1/10 less luminosity, 10 XS).

- Existing BIB simulation at 1.5 TeV CME (conservative estimate). 3 step plan:
 - #1: Reduce hits by a) timing and b) spatial correlations in double layer hits.
 - #2: Perform tracking imposing quality criteria (d0, good track fit, no holes).
 - #3: Collider analysis.

Reducing hits

Heavy particles can get lost!

Signal hits should be aligned!

Tracking

Collider analysis (I)

2 Signal Regions

Requirement / Region	$\mathrm{SR}_{1t}^{\gamma}$	$\mathrm{SR}_{2t}^{\gamma}$
Vetoes	leptons and jets	
Leading tracklet p_{T} [GeV]	> 300	> 20
Leading tracklet θ [rad]	$[2/9\pi,7/9\pi]$	
Subleading tracklet $p_{\rm T}$ [GeV]	-	> 10
Tracklet pair Δz [mm]	-	< 0.1
Photon energy [GeV]	> 25	> 25

Collider analysis (II)

Mass reach reduces fast with Δ

About 0.5/ab for discovery (0.1 for exclusion)

Comparison with other colliders

- MuC toe-to-toe with FCC-hh (can cover both thermal Higgsinos and Winos)
- Warning! Do not overbuy benchmarks
 (worth checking non-MSSM WIMPs and non-WIMP scenarios as well!)

Outlook

- Muon Collider (MuC) is at the forefront of the Snowmass effort.

 Many promising physics opportunities arise, cross-frontiers (EF-AF-TF).
- Long-Lived Particles (LLPs), a theoretically sound BSM class of signatures, can be well explored at a MuC.
- This talk: disappearing tracks (a LLP signature) can lead to discovery of thermal Winos and Higgsinos (de-facto benchmark for future colliders).
- Beneficial: consider other models (non-SUSY, non-WIMPs) using DT@MuC.
- For MuC folks: It would be highly desirable to have an updated Beam Induced Background (BIB) sample to verify the assumption that (fixing the "machine") the BIB decreases with energy. This is needed for a robust assessment of the MuC experimental sensitivity (particularly for LLPs).
- Other LLP signatures are a low-hanging fruit (DVs, HSCPs, etc...). MuC is not clean out of the box, but can be made cleaner [taming BIB].